13 research outputs found

    Maximum torque-per-Amp control for traction IM drives: theory and experimental results

    Get PDF
    A novel maximum torque per Ampere (MTPA) controller for induction motor (IM) drives is presented. It is shown to be highly suited to applications that do not demand an extremely fast dynamic response, for example electric vehicle drives. The proposed MTPA field oriented controller guarantees asymptotic torque (speed) tracking of smooth reference trajectories and maximises the torque per Ampere ratio when the developed torque is constant or slow varying. An output-feedback linearizing concept is employed for the design of torque and flux subsystems to compensate for the torque-dependent flux variations required to satisfy the MTPA condition. As a first step, a linear approximation of the IM magnetic system is considered. Then, based on a standard saturated IM model, the nonlinear static MTPA relationships for the rotor flux are derived as a function of the desired torque, and a modified torque-flux controller for the saturated machine is developed. The flux reference calculation method to achieve simultaneously an asymptotic field orientation, torque-flux decoupling and MTPA optimization in steady state is proposed. The method guarantees singularity-free operation and can be used as means to improve stator current transients. Experimental tests prove the accuracy of the control over a full torque range and show successful compensation of the magnetizing inductance variations caused by saturation. The proposed MTPA control algorithm also demonstrates a decoupling of the torque (speed) and flux dynamics to ensure asymptotic torque tracking. In addition, a higher torque per Ampere ratio is achieved together with an improved efficiency of electromechanical energy conversion

    Maximum torque-per-amp tracking control of saturated induction motors

    Get PDF
    An improved maximum torque per Ampere (MTPA) controller for induction motor (IM) drives is presented. The proposed MTPA field oriented controller guarantees asymptotic torque tracking of smooth reference trajectories and maximises the torque per Ampere ratio when the developed torque is constant or slow varying. Due to use closed loop flux observer and high-gain PI controllers for both stator current components the proposed solution provides improved robustness with respect to parameters variations and inverter non-idealities. Experimental tests prove the accuracy of the proposed control over a full torque range. In addition, a higher torque per Ampere ratio is achieved together with an improved efficiency of electromechanical energy conversion

    Dynamic output feedback linearizing control of saturated induction motors with torque per ampere ratio maximization

    Get PDF
    The paper presents a novel maximum torque per Ampere (MTA) controller for induction motor (IM) drives. The proposed controller exploits the concept of direct (observer based) field orientation and guarantees asymptotic torque tracking of smooth reference trajectories and maximizes the torque per Ampere ratio when the developed torque is constant or slowly varying. A dynamic output-feedback linearizing technique is employed for the torque subsystem design. In order to improve torque tracking accuracy a motor magnetizing curve is taken into account during MTA optimization and controller design. The achieved steady-state system efficiency have been compared experimentally for three types of controllers, namely: standard vector control with constant flux operation, controller based on classic maximization of torque per Ampere ratio for linear magnetic circuit and controller based on MTA strategy for saturated induction motor. It is shown experimentally that the controller designed for saturated induction motor provides not only higher torque per Ampere ratio but also increases power factor and reduces active power consumption hence improving the drive efficiency. Operation with slowly varying torque references has also been analysed. It is shown that the proposed controller is suitable for applications that do not demand an extremely fast dynamic response, for example for electric vehicle drives

    Indirect field-oriented torque control of induction motors with maximum torque per ampere ratio

    Get PDF
    Π’ Π΄Π°Π½Ρ–ΠΉ статті прСдставлСно Π½ΠΎΠ²Ρ– Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½Ρ– Ρ‚Π° Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π² Π³Π°Π»ΡƒΠ·Ρ– Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ кСрування асинхронними Π΄Π²ΠΈΠ³ΡƒΠ½Π°ΠΌΠΈ. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ Π½ΠΎΠ²ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ нСпрямого струмового Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ кСрування ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ асинхронного Π΄Π²ΠΈΠ³ΡƒΠ½Π°, який Π³Π°Ρ€Π°Π½Ρ‚ΡƒΡ” максимальнС ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ ΠΌΠΎΠΌΠ΅Π½Ρ‚-струм Π² усталСних Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ. Π—Π°ΠΏΡ€ΠΎ-ΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” Π΄ΠΎΡΡ‚Π°Ρ‚Π½ΡŒΠΎ високі Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Ρ€Π΅Π³ΡƒΠ»ΡŽΠ²Π°Π½Π½Ρ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ, Ρ‰ΠΎ ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΠ΅Π½ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ модСлювання Ρ‚Π° Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ.The paper reports new theoretical and experimental results in vector control of induction motors. A novel indirect field-oriented torque tracking controller is designed for current fed induction machine, which guarantees maximal torque per Ampere ratio during steady state. The proposed controller assures quite fast dynamics in the torque response. Results of simulation and experimental tests illustrate important features of the control proposed.Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны Π½ΠΎΠ²Ρ‹Π΅ тСорСтичСскиС ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² области Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ управлСния асинхронными двигатСлями. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π½ΠΎΠ²Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ нСпрямого Ρ‚ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ управлСния ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ асинхронного двигатСля, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π³Π°Ρ€Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅Ρ‚ максимум ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠΎΠΌΠ΅Π½Ρ‚-Ρ‚ΠΎΠΊ Π² ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΡ…ΡΡ Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… Ρ€Π°Π±ΠΎΡ‚Ρ‹. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ обСспСчиваСт достаточно высокиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ качСства рСгулирования ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ матСматичСского модСлирования ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ исслСдованиями

    Robust indirect field oriented control of induction generator

    Get PDF
    The paper presents a novel robust field oriented vector control for induction generators. The proposed controller exploits the concept of indirect field orientation and guarantees asymptotic DC-link voltage regulations when DC-load is constant or slowly varying. An output-feedback linearizing Lyapunov’s based technique is employed for the voltage controller design. Flux subsystem design provides robustness with respect to rotor resistance variations. Decomposition of the voltage and current-flux subsystems, based on the two-time scale separation, allows to use a simple controllers tuning procedure. Results of comparative experimental study with standard indirect field oriented control are presented. It is shown that in contrast to existing solutions designed controller provides system performances stabilization when speed and flux are varying. Experimentally shown that robust field oriented controller ensures robust flux regulation and robust stabilization of the torque current dynamics leading to improved energy efficiency of the electromechanical conversion process. Proposed controller is suitable for energy generation systems with variable speed operation

    Dynamic performances of the shunt active power filter control system

    Get PDF
    Π“Π°Ρ€ΠΌΠΎΠ½Ρ–Ρ‡Π½Ρ– спотворСння Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΌΠ΅Ρ€Π΅ΠΆΠ°Ρ… Ρ” Π΄ΠΎΠ±Ρ€Π΅ Π²Ρ–Π΄ΠΎΠΌΠΈΠΌΠΈ Ρ‚Π° Π΄ΠΎΡΡ‚Π°Ρ‚Π½ΡŒΠΎ Π²ΠΈΠ²Ρ‡Π΅Π½ΠΈΠΌΠΈ явищами. Π‘ΠΈΠ»ΠΎΠ²ΠΈΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ Ρ„Ρ–Π»ΡŒΡ‚Ρ€ Π²ΠΈΠ·Π½Π°Π½ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌ засобом для задоволСння Π²ΠΈΠΌΠΎΠ³ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΈΡ… Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Ρ–Π², Ρ‰ΠΎ Ρ€Π΅Π³ΡƒΠ»ΡŽΡŽΡ‚ΡŒ ΡΠΊΡ–ΡΡ‚ΡŒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΅Π½Π΅Ρ€Π³Ρ–Ρ—. ΠΠ΅Π·Π²Π°ΠΆΠ°ΡŽΡ‡ΠΈ Π½Π° Ρ†Π΅ΠΉ Ρ„Π°ΠΊΡ‚, їхня ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π° рСалізація досі пов’язана Π·Ρ– Π·Π½Π°Ρ‡Π½ΠΈΠΌΠΈ складностями. Π—ΠΎΠΊΡ€Π΅ΠΌΠ°, Π² Ρ–ΡΠ½ΡƒΡŽΡ‡ΠΈΡ… систСмах для ΠΎΡ†Ρ–Π½ΡŽΠ²Π°Π½Π½Ρ Π³Π°Ρ€ΠΌΠΎΠ½Ρ–Ρ‡Π½ΠΎΠ³ΠΎ складу струму ΠΌΠ΅Ρ€Π΅ΠΆΡ–, як ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π½Π° основі швидкого пСрСтворСння Ѐур’є Π°Π±ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π½Π° основі Ρ‚Π΅ΠΎΡ€Ρ–Ρ— ΠΌΠΈΡ‚Ρ‚Ρ”Π²ΠΎΡ— потуТності. ΠŸΡ€ΠΎΡ‚Π΅ використання швидкого пСрСтворСння Ѐур’є Π²ΠΈΠΌΠ°Π³Π°Ρ” високої ΠΎΠ±Ρ‡ΠΈΡΠ»ΡŽΠ²Π°Π»ΡŒΠ½ΠΎΡ— здатності систСми кСрування Π· ΠΎΠ΄Π½Ρ–Ρ”Ρ— сторони, Π° застосування Ρ‚Π΅ΠΎΡ€Ρ–Ρ— ΠΌΠΈΡ‚Ρ‚Ρ”Π²ΠΎΡ— потуТності Π·Π½Π°Ρ‡Π½ΠΎ ΠΏΡ–Π΄Π²ΠΈΡ‰ΡƒΡ” Π²ΠΈΠΌΠΎΠ³ΠΈ Π΄ΠΎ силової частини Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ„Ρ–Π»ΡŒΡ‚Ρ€Π°. Застосування Ρ–Π½ΡˆΠΎΠ³ΠΎ ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρƒ – сСлСктивної компСнсації Π³Π°Ρ€ΠΌΠΎΠ½Ρ–ΠΊ, Π΄Π°Ρ” ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Π·ΠΌΠ΅Π½ΡˆΠΈΡ‚ΠΈ Π²ΠΈΠΌΠΎΠ³ΠΈ Π΄ΠΎ ΠΎΠ±Ρ‡ΠΈΡΠ»ΡŽΠ²Π°Π»ΡŒΠ½ΠΎΡ— потуТності Ρ‚Π° Π·Π½Π°Ρ‡Π½ΠΎ спростити Ρ‚Π΅Ρ…Π½Ρ–Ρ‡Π½Ρƒ Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–ΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ„Ρ–Π»ΡŒΡ‚Ρ€Π° Ρ– ΠΏΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ досягти прийнятного рівня компСнсації ΡΠΏΠΎΡ‚Π²ΠΎΡ€Π΅Π½ΡŒ. Π’ статті прСдставлСно Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠΈ Ρ‚Π° дослідТСння систСми кСрування силовим Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌ Ρ„Ρ–Π»ΡŒΡ‚Ρ€ΠΎΠΌ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° систСма кСрування ΡΠΊΠ»Π°Π΄Π°Ρ”Ρ‚ΡŒΡΡ Ρ–Π· сСлСктивного спостСрігача Π³Π°Ρ€ΠΌΠΎΠ½Ρ–ΠΊ, Π»Ρ–Π½Π΅Π°Ρ€ΠΈΠ·ΡƒΡŽΡ‡ΠΎΠ³ΠΎ Π·Π²ΠΎΡ€ΠΎΡ‚Π½ΠΈΠΌ зв’язком рСгулятора струмів, рСгулятора Π½Π°ΠΏΡ€ΡƒΠ³ΠΈ Π»Π°Π½ΠΊΠΈ постійного струму Ρ„Ρ–Π»ΡŒΡ‚Ρ€Π° Ρ‚Π° спостСрігача Π½Π°ΠΏΡ€ΡƒΠ³ΠΈ ΠΌΠ΅Ρ€Π΅ΠΆΡ–. БпостСрігач Π³Π°Ρ€ΠΌΠΎΠ½Ρ–ΠΊ, який Π½Π°Π»Π°ΡˆΡ‚ΠΎΠ²Π°Π½ΠΎ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Π΄ΠΎ спрощСної ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ΠΈ, Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” сСлСктивнС виявлСння Π²ΠΈΡ‰ΠΈΡ… Π³Π°Ρ€ΠΌΠΎΠ½Ρ–ΠΊ струму ΠΌΠ΅Ρ€Π΅ΠΆΡ– Ρ‚Π° Ρ„ΠΎΡ€ΠΌΡƒΡ” завдання Π½Π° струм компСнсації, якС Π²Ρ–Π΄ΠΏΡ€Π°Ρ†ΡŒΠΎΠ²ΡƒΡ”Ρ‚ΡŒΡΡ рСгуляторами струмів. НСлінійний рСгулятор Π½Π°ΠΏΡ€ΡƒΠ³ΠΈ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” асимптотичнС Ρ€Π΅Π³ΡƒΠ»ΡŽΠ²Π°Π½Π½Ρ ΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΠ³ΠΎ значСння Π½Π°ΠΏΡ€ΡƒΠ³ΠΈ Π»Π°Π½ΠΊΠΈ постійного струму БАЀ, розв’язанС Π· процСсом компСнсації струмів. Адаптивний спостСрігач Π½Π°ΠΏΡ€ΡƒΠ³ΠΈ ΠΌΠ΅Ρ€Π΅ΠΆΡ– Π½Π°Π΄Π°Ρ” Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΡŽ ΠΏΡ€ΠΎ Π°ΠΌΠΏΠ»Ρ–Ρ‚ΡƒΠ΄Ρƒ, частоту обСртання Ρ‚Π° полоТСння Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π°ΠΏΡ€ΡƒΠ³ΠΈ ΠΌΠ΅Ρ€Π΅ΠΆΡ–. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Ρƒ систСму кСрування Ρ€Π΅Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΎ Π½Π° Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΌΡƒ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½ΠΎΠΌΡƒ процСсорі TMS320F28335 Ρ‚Π° дослідТСно Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρ€Π°Π·ΠΎΠΌ Ρ–Π· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ модСлювання ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΡƒΡŽΡ‚ΡŒ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Ρ€Ρ–ΡˆΠ΅Π½Π½Ρ. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Π° систСма кСрування ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚Π°Π½ΠΎΡŽ для Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— силових Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Ρ„Ρ–Π»ΡŒΡ‚Ρ€Ρ–Π².Harmonic pollution of the electrical mains is well known and well-studied phenomena. Active power filter being a powerful tool to meet the requirements of regulatory documents regulating the electricity quality. Despite this fact, practical implementation of the active power filter is still connected with significant difficulties. In particular, existing systems typically use fast Fourier transform methods or instantaneous power theory to estimate the harmonic composition of the mains current. However, the use of fast Fourier transform requires high computing power of the control system, and the implementation of the theory of instantaneous power significantly increases the requirements for the power part of the active filter. The application of another approach - selective compensation of harmonics, makes it possible to reduce computational requirements and significantly simplify the technical implementation of the active filter and at the same time to achieve an acceptable level of distortion compensation. In this paper, the shunt active power filter control system is designed and investigated. Proposed control system consist of selective harmonics observer, feedback-linearizing current controller, dc-link controller and mains voltage observer. Harmonics observer is tuned according to simplified approach, provides selective estimation of the load current harmonics and produce the compensation current reference for the current controller. Nonlinear dc-link voltage controller guarantees decoupled from current compensation process asymptotic regulation of the average dc-link voltage. Mains voltage vector adaptive observer provides magnitude, angular position and frequency estimation. Proposed control system is implemented on digital signal processor TMS320F28335 end verified experimentally. Results of experimental investigations together with results of simulations confirm effectiveness of proposed solution. Developed control system can be used for shunt active filters implementation.ГармоничСскиС искаТСния Π² элСктричСских сСтях – Ρ…ΠΎΡ€ΠΎΡˆΠΎ извСстныС ΠΈ достаточно ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ явлСния. Π‘ΠΈΠ»ΠΎΠ²ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ ΠΏΡ€ΠΈΠ·Π½Π°Π½ΠΎ эффСктивным срСдством для удовлСтворСния Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ², Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… качСство элСктроэнСргии. НСсмотря Π½Π° этот Ρ„Π°ΠΊΡ‚, ΠΈΡ… практичСская рСализация всС Π΅Ρ‰Π΅ связана со Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ слоТностями. Π’ частности, Π² ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… систСмах для ΠΎΡ†Π΅Π½ΠΊΠΈ гармоничСского состава Ρ‚ΠΎΠΊΠ° сСти, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π½Π° основС быстрого прСобразования Π€ΡƒΡ€ΡŒΠ΅ ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π½Π° основС Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ мощности. Однако использованиС быстрого прСобразования Π€ΡƒΡ€ΡŒΠ΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ высокой Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ способности систСмы управлСния с ΠΎΠ΄Π½ΠΎΠΉ стороны, Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ мощности Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ трСбования ΠΊ силовой части Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° - сСлСктивной компСнсации Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΊ, Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ трСбования ΠΊ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ мощности ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Ρ‚Π΅Ρ…Π½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° ΠΈ ΠΏΡ€ΠΈ этом Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ ΠΏΡ€ΠΈΠ΅ΠΌΠ»Π΅ΠΌΠΎΠ³ΠΎ уровня компСнсации искаТСний. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ исслСдования систСмы управлСния силовым Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠΌ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ систСма управлСния состоит ΠΈΠ· сСлСктивного Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»Ρ Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΊ, Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ связью рСгулятора Ρ‚ΠΎΠΊΠΎΠ², рСгулятора напряТСния Π·Π²Π΅Π½Π° постоянного Ρ‚ΠΎΠΊΠ° Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° ΠΈ Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»Ρ напряТСния. ΠΠ°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»ΡŒ Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ настроСн Π² соотвСтствии с ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ΠΎΠΉ, обСспСчиваСт сСлСктивноС ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π²Ρ‹ΡΡˆΠΈΡ… Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΊ Ρ‚ΠΎΠΊΠ° сСти ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅Ρ‚ задания Π½Π° Ρ‚ΠΎΠΊ компСнсации, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ отрабатываСтся рСгуляторами Ρ‚ΠΎΠΊΠΎΠ². НСлинСйный рСгулятор напряТСния обСспСчиваСт асимптотичСскоС рСгулирования срСднСго значСния напряТСния Π·Π²Π΅Π½Π° постоянного Ρ‚ΠΎΠΊΠ° БАЀ, развязанноС ΠΎΡ‚ процСсса компСнсации Ρ‚ΠΎΠΊΠΎΠ². Адаптивный Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»ΡŒ напряТСния сСти прСдоставляСт ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎΠ± Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π΅, частотС вращСния ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° напряТСния. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡƒΡŽ систСму управлСния Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ Π½Π° Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΌ сигнальном процСссорС TMS320F28335 ΠΈ исслСдовано ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований вмСстС с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ модСлирования ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Разработанная систСма управлСния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ силовых Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ²

    Dynamic output feedback linearizing control of saturated induction motors with torque per ampere ratio maximization

    No full text
    The paper presents a novel maximum torque per Ampere (MTA) controller for induction motor (IM) drives. The proposed controller exploits the concept of direct (observer based) field orientation and guarantees asymptotic torque tracking of smooth reference trajectories and maximizes the torque per Ampere ratio when the developed torque is constant or slowly varying. A dynamic output-feedback linearizing technique is employed for the torque subsystem design. In order to improve torque tracking accuracy a motor magnetizing curve is taken into account during MTA optimization and controller design. The achieved steady-state system efficiency have been compared experimentally for three types of controllers, namely: standard vector control with constant flux operation, controller based on classic maximization of torque per Ampere ratio for linear magnetic circuit and controller based on MTA strategy for saturated induction motor. It is shown experimentally that the controller designed for saturated induction motor provides not only higher torque per Ampere ratio but also increases power factor and reduces active power consumption hence improving the drive efficiency. Operation with slowly varying torque references has also been analysed. It is shown that the proposed controller is suitable for applications that do not demand an extremely fast dynamic response, for example for electric vehicle drives

    Vector control of induction motor drives using matrix converter

    No full text
    A new development of vector control for induction motor drives using matrix converter is presented. The proposed new direct field-oriented controller permits to achieve asymptotic speed and flux tracking in presence of unknown load torque. A new combined SVPWM and matrix converter switches communication strategy is proposed. The results of simulation and experimental tests confirm the high dynamic performance of the induction motor drive
    corecore